Edge-transitive almost self-complementary graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Complementary Vertex-Transitive Graphs

A graph Γ is self-complementary if its complement is isomorphic to the graph itself. An isomorphism that maps Γ to its complement Γ is called a complementing isomorphism. The majority of this dissertation is intended to present my research results on the study of self-complementary vertex-transitive graphs. I will provide an introductory mini-course for the backgrounds, and then discuss four pr...

متن کامل

On almost self-complementary graphs

A graph is called almost self-complementary if it is isomorphic to one of its almost complements Xc − I, where Xc denotes the complement of X and I a perfect matching (1-factor) in Xc. Almost self-complementary circulant graphs were first studied by Dobson and Šajna in 2004. In this paper we investigate some of the properties and constructions of general almost self-complementary graphs. In par...

متن کامل

Homogeneously almost self-complementary graphs

A graph is called almost self-complementary if it is isomorphic to the graph obtained from its complement by removing a 1-factor. In this paper, we study a special class of vertex-transitive almost self-complementary graphs called homogeneously almost selfcomplementary. These graphs occur as factors of symmetric index-2 homogeneous factorizations of the “cocktail party graphs” K2n − nK2. We con...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2017

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2016.12.003